Project: The North-East Pacific Undersea Networked Experiments (NEPTUNE) is an oceanographic project managed by Ocean Networks Canada (ONC), an initiative of the University of Victoria. It consists of a cabled observatory off the west coast of Vancouver Island, beginning in Port Alberni and extending 300 km offshore along an 813 km loop. From a shore landing, an armoured marine cable extends along the ocean bottom to large observatory “Nodes”, into which oceanographic instrument systems connect. High voltage power is supplied down the cable, and Ethernet communications along fibre optics bring data and images back to the University in real time. Project status, system information, and data are available from the Ocean Networks Canada website: www.oceannetworks.ca

What: High voltage marine fibre optic cables and observatory systems (see web site for system details).
When: Latest system and instrument deployments in Barkley Canyon: 27 March 2021
Where: Barkley Canyon and Upper Slope, West Coast Vancouver Island. See chart # 3001 (ENC CA270389) for cable route and obstructions. The Offshore Profiling System (a winched profiling buoy extending from the seafloor to the sea surface) is listed on the Automatic Identification System (AIS) as MMSI 993166003.
Note: Cables are exposed at the surface. Please use caution when operating in this area. Cable position files are available at the link below. Other formats are available upon request.
These figures have been produced by the University of Victoria based on Canadian Hydrographic Service (CHS) charts, pursuant to CHS Direct User License No. 2019-1004-1260-UV. The incorporation of data sourced from CHS in these products shall not be construed as constituting an endorsement by CHS of these products. These products do not meet the requirements of the Charts and Nautical Publications Regulations, 1995 under the Canada Shipping Act, 2001. Official charts and publications; corrected and up-to-date, must be used to meet the requirements of those regulations.

Full cable routes and waypoints are available for use with Electronic Navigation Systems from the ONC website: http://www.oceannetworks.ca/installations/notice-mariners

Installations:

<table>
<thead>
<tr>
<th>Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transponder 2</td>
<td>48.25270</td>
<td>-126.44210</td>
<td>2070</td>
<td>An orange GPS Acoustics device extending 2 m off seafloor</td>
</tr>
<tr>
<td>Transponder 1</td>
<td>48.27619</td>
<td>-126.40889</td>
<td>2070</td>
<td>An orange GPS Acoustics device extending 2 m off seafloor</td>
</tr>
<tr>
<td>Transponder 3</td>
<td>48.28383</td>
<td>-126.45612</td>
<td>2068</td>
<td>An orange GPS Acoustics device extending 2 m off seafloor</td>
</tr>
<tr>
<td>Kongsberg Sonar East (Hydrate)</td>
<td>48.31168</td>
<td>-126.06518</td>
<td>871</td>
<td>3 m grey steel tripod</td>
</tr>
<tr>
<td>Kongsberg Sonar West (Hydrate)</td>
<td>48.31205</td>
<td>-126.06639</td>
<td>869</td>
<td>3 m grey steel tripod</td>
</tr>
<tr>
<td>CTD (Hydrate)</td>
<td>48.31207</td>
<td>-126.06583</td>
<td>871</td>
<td>3 m white tripod</td>
</tr>
<tr>
<td>Instrument Platform (Hydrate)</td>
<td>48.31208</td>
<td>-126.06586</td>
<td>871</td>
<td>Large (3 m) grey steel frame</td>
</tr>
<tr>
<td>Accelerometer (Canyon Mid East)</td>
<td>48.31465</td>
<td>-126.05820</td>
<td>897</td>
<td>Buried 1 m circular green caisson with cable at surface</td>
</tr>
<tr>
<td>CTD (Canyon Mid East)</td>
<td>48.31490</td>
<td>-126.05847</td>
<td>895</td>
<td>3 m white tripod</td>
</tr>
<tr>
<td>Instrument Platform (Canyon Mid East)</td>
<td>48.31490</td>
<td>-126.05853</td>
<td>895</td>
<td>Large (3 m) grey steel frame</td>
</tr>
<tr>
<td>ADCP (Canyon Mid East)</td>
<td>48.31494</td>
<td>-126.05859</td>
<td>893</td>
<td>1 m green rectangular fiberglass platform</td>
</tr>
<tr>
<td>Camera (Canyon Mid East)</td>
<td>48.31499</td>
<td>-126.05851</td>
<td>890</td>
<td>3 m grey steel tripod</td>
</tr>
<tr>
<td>Sonar (Canyon Axis)</td>
<td>48.31658</td>
<td>-126.05088</td>
<td>985</td>
<td>3 m white tripod</td>
</tr>
<tr>
<td>Instrument Platform (Canyon Axis)</td>
<td>48.31661</td>
<td>-126.05044</td>
<td>984</td>
<td>Large (3 m) grey steel frame</td>
</tr>
<tr>
<td>Camera (Canyon Axis)</td>
<td>48.31655</td>
<td>-126.05080</td>
<td>981</td>
<td>3 m red and white tripod with yellow float</td>
</tr>
<tr>
<td>ADCP (Canyon Axis)</td>
<td>48.31667</td>
<td>-126.05053</td>
<td>983</td>
<td>1 m green rectangular fiberglass platform</td>
</tr>
<tr>
<td>Hydrophone (Node)</td>
<td>48.34517</td>
<td>-126.15732</td>
<td>641</td>
<td>Yellow metal pole rising 3 m from seafloor</td>
</tr>
<tr>
<td>Tiltmeter (Node)</td>
<td>48.34548</td>
<td>-126.15744</td>
<td>643.9</td>
<td>1 m cylindrical titanium can, with white cap</td>
</tr>
<tr>
<td>Instrument Platform (Node)</td>
<td>48.34550</td>
<td>-126.15772</td>
<td>642</td>
<td>Large (3 m) grey steel frame</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Node</td>
<td>48.34603</td>
<td>-126.15781</td>
<td>643.8</td>
<td>Large 7 m yellow trawl resistant frame, 13 tons</td>
</tr>
<tr>
<td>Branching Unit</td>
<td>48.35475</td>
<td>-126.13102</td>
<td>460</td>
<td>3 m cylindrical steel can</td>
</tr>
<tr>
<td>Tiltmeter (Upper Slope South)</td>
<td>48.42652</td>
<td>-126.17465</td>
<td>393</td>
<td>1 m cylindrical pole</td>
</tr>
<tr>
<td>Accelometer (Upper Slope South)</td>
<td>48.42661</td>
<td>-126.17473</td>
<td>395</td>
<td>0.5 m Cylindrical frame with glass sphere</td>
</tr>
<tr>
<td>AquaDop Current Profiler (Upper Slope South)</td>
<td>48.42671</td>
<td>-126.17440</td>
<td>395</td>
<td>1 m yellow frame with green caisson</td>
</tr>
<tr>
<td>ADCP (Upper Slope South)</td>
<td>48.42681</td>
<td>-126.17526</td>
<td>398</td>
<td>Acoustic instrument on the seabed</td>
</tr>
<tr>
<td>Instrument Platform (Upper Slope South)</td>
<td>48.42684</td>
<td>-126.17447</td>
<td>394</td>
<td>Large (3 m) grey steel frame</td>
</tr>
<tr>
<td>Camera (Upper Slope South)</td>
<td>48.42685</td>
<td>-126.17462</td>
<td>395</td>
<td>3 m grey steel tripod</td>
</tr>
<tr>
<td>Accelerometer (Upper Slope)</td>
<td>48.42706</td>
<td>-126.17478</td>
<td>395</td>
<td>0.5 m Cylindrical frame with glass sphere</td>
</tr>
<tr>
<td>Instrument Platform (Upper Slope)</td>
<td>48.42720</td>
<td>-126.17438</td>
<td>395</td>
<td>Large (3 m) grey steel frame</td>
</tr>
<tr>
<td>ADCP (Upper Slope)</td>
<td>48.42720</td>
<td>-126.17438</td>
<td>395</td>
<td>Acoustic instrument on the seabed</td>
</tr>
<tr>
<td>CTD (Upper Slope)</td>
<td>48.42723</td>
<td>-126.17430</td>
<td>396</td>
<td>3 m white tripod</td>
</tr>
<tr>
<td>BPR (Upper Slope)</td>
<td>48.42730</td>
<td>-126.17471</td>
<td>293</td>
<td>1 m triangular steel platform</td>
</tr>
<tr>
<td>Seismometer (Upper Slope)</td>
<td>48.42753</td>
<td>-126.17518</td>
<td>396</td>
<td>1 m spherical grey titanium platform</td>
</tr>
<tr>
<td>Offshore Profiling System (Upper Slope)</td>
<td>48.42755</td>
<td>-126.17411</td>
<td>390</td>
<td>Winched profiling buoy extending from the seafloor to the sea surface</td>
</tr>
</tbody>
</table>

Contacts: If you have any concerns, or would like further information, please contact either: Ian Kulin, Ocean Networks Canada's Director of Marine Operations at ikulin@uvic.ca or 250 721-6279, or ONC GIS Specialists at GIS@oceannetworks.ca.