## Information for Mariners – November 2023 NEPTUNE Observatory: Endeavour Project: The North-East Pacific Undersea Networked Experiments (NEPTUNE) is an oceanographic project managed by Ocean Networks Canada (ONC), an initiative of the University of Victoria. It consists of a cabled observatory off the west coast of Vancouver Island, beginning in Port Alberni and extending 300 km offshore along an 813 km loop. From a shore landing, an armoured marine cable extends along the ocean bottom to large observatory "Nodes", into which oceanographic instrument systems connect. High voltage power is supplied down the cable, and Ethernet communications along fibre optics bring data and images back to the University in real time. Project status, system information, and data are available from the Ocean Networks Canada web site: www.oceannetworks.ca What: High voltage marine fibre-optic cables and observatory systems (see website for system details). When: Latest system and instrument deployments at the Endeavour site: 9 September 2023 Where: Endeavour, Juan de Fuca Ridge, West Coast Vancouver Island. See Chart # 3000. The infrastructure at Endeavour is located within the Canadian Department of Fisheries and Oceans' Marine Protected Area. **Remotely Operated Vehicle Operators** should be made aware that there are **4 moorings** at this site that extend 250 m – 270 m into the water column. Please contact us for more information (contact information provided below). These figures have been produced by the University of Victoria based on Canadian Hydrographic Service (CHS) charts, pursuant to CHS DULA CHS # 2022-1122-1260-U. The incorporation of data sourced from CHS in these products shall not be construed as constituting an endorsement by CHS of these products. These products do not meet the requirements of the Charts and Nautical Publications Regulations, 1995 under the Canada Shipping Act, 2001. Official charts and publications; corrected and up-to-date, must be used to meet the requirements of those regulations. ## Installations: | installations: | T | 1 | I | T = | |-------------------------------------------------------------|----------|------------|-----------|-------------------------------------------------------------------------| | Name | Latitude | Longitude | Depth (m) | Description | | EN-<br>BU_BranchingUnit_2007-<br>08 | 47.93261 | -128.94840 | 2505 | 3 m cylindrical steel can | | EN-<br>Mudmat_MEFCable_IPEn<br>d_2021-08 | 47.94923 | -129.09536 | 2211 | 1.5 m metal and plastic rectangular platform | | EN-<br>Mudmat_MEFCable_Nod<br>eEnd_2021-08 | 47.95842 | -129.03588 | 2325 | 1.5 m metal and plastic rectangular platform | | EN-<br>Mudmat_MothraCable_IP<br>End_2016-05 | 47.92399 | -129.10805 | 2280 | 1.5 m yellow rectangular platform | | EN-<br>Mudmat_MothraCable_N<br>odeEnd_201605 | 47.95820 | -129.03576 | 2323 | 1.5 m yellow rectangular platform | | EN-<br>Mudmat_RCMNCable_IP<br>End_2016-05 | 47.97331 | -129.08234 | 2151 | 1.5 m yellow rectangular platform | | EN-<br>Mudmat_RCMNCable_No<br>deEnd_2016-05 | 47.95826 | -129.03582 | 2321 | 1.5 m yellow rectangular platform | | EN-<br>Mudmat_WestRidgeFlank<br>Cable_BBSEnd_2016-05 | 47.95989 | -129.12386 | 2362 | 1.5 m yellow rectangular platform | | EN-<br>Mudmat_WestRidgeFlank<br>Cable_RCMNIPEnd_201<br>6-05 | 47.97312 | -129.08237 | 2159 | 1.5 m yellow rectangular platform | | EN-<br>Node_BBS_ENEF_2022-<br>07 | 47.95835 | -129.03553 | 2321 | 1 m white cylinder | | EN-<br>Node_BPR_ENEF_2022-<br>07 | 47.95835 | -129.03559 | 2321 | 1.5 m yellow rectangular platform | | EN-<br>Node_InterfaceUnit_ENE<br>F 2022-07 | 47.95839 | -129.03550 | 2321 | This is the site of the Maris Interface Unit near the Maris Seismometer | | EN-Node_JB_2022-05 | 47.95845 | -129.03542 | 2320 | Large (3 m) grey steel frame | | EN-Node_Node_2009-08 | 47.95837 | -129.03544 | 2323 | Large 7 m yellow trawl resistant frame, 13 tons | | Grotto_BARS_2023-07 | 47.94924 | -129.09838 | 2186 | 1 m cylindrical can with 4 legs and separate cabled wand | | HighRiseGodzilla_BARS_<br>2019-09 | 47.96811 | -129.08754 | 2154 | 1 m cylindrical can with 4 legs | | MEF_ADCP_2017-06 | 47.94909 | -129.09823 | 2195 | 1 m cubic aluminum, plastic, and fiberglass platform | | MEF_AutonomousSedim entTrap 2023-06 | 47.94870 | -129.09913 | 2198 | Yellow mooring extending 8m above bottom | | MEF_Camera_2021-08 | 47.94928 | -129.09829 | 2186 | 1 m triangular metal and plastic platform | | MEF_North_Hydrophone<br>Array_2023-09 | 47.94932 | -129.09821 | 2195 | Large (3 m) metal tripod | | MEF_IP_2020-06 | 47.94907 | -129.09877 | 2196 | Large (3 m) grey steel frame | | MEF_RAS_PPS_2023-07 | 47.94928 | -129.09831 | 2184 | 2m metal and plastic multi-tiered platform | | MEF_SeismometerChain 1_2023-06 | 47.94956 | -129.09869 | 2190 | 1 m green square frame with 1 m cylinder | | | | | | | | TVET TOTAL Observatory/Oce | | | • | November 2025 | |---------------------------------------|----------|------------|------|----------------------------------------------------------------------------------------------------------------| | MEF_South_BARS_2023 | 47.94809 | -129.09851 | 2195 | 1 m cylindrical can with 4 legs | | MEF_South_BPR_2023-<br>09 | 47.94817 | -129.09883 | 2193 | Bottom pressure recording instrument deployed on seabed | | MEF South IP 2018-06 | 47.94805 | -129.09892 | 2186 | Large (3 m) grey steel frame | | MEF_SPS_KEMF_2010-<br>09 | 47.94857 | -129.09866 | 2195 | 0.5 m titanium canister | | MEF_SPS-BPR_BPR-<br>Site KEMF 2014-05 | 47.94858 | -129.09868 | 2195 | 1 m steel triangular frame | | Mothra_BARS_2023-06 | 47.92383 | -129.10865 | 2272 | 1 m cylindrical can with 4 legs and separate cabled wand | | Mothra_BBS_KEMO_202<br>3-06 | 47.92402 | -129.10812 | 2276 | 0.5 m titanium canister | | Mothra_BPR_KEMO_202<br>2-08 | 47.92401 | -129.10818 | 2276 | Bottom pressure recording instrument deployed on the seabed | | Mothra_Camera_2020-09 | 47.92393 | -129.10865 | 2276 | 2 m titanium tripod | | Mothra_IP_2020-06 | 47.92383 | -129.10816 | 2271 | Large (3 m) grey steel frame | | RC-N_BPR_2022-05 | 47.97350 | -129.08186 | 2152 | 1 m steel triangular frame | | RC-N_IP_2019-05-14 | 47.97337 | -129.08188 | 2177 | Large (3 m) grey steel frame | | RC-N_SPS_NCHR_2016-<br>06 | 47.97364 | -129.08192 | 2158 | 1 m steel triangular frame | | RC-S_BPR_2016-06 | 47.93310 | -129.09885 | 2228 | 1 m steel triangular frame | | RC-S_IP_2012-06 | 47.93323 | -129.09886 | 2230 | Large (3 m) grey steel frame | | RCM-NE_MJB_2021-08 | 47.97355 | -129.08228 | 2153 | Weighted bottom of fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NE_005mab_2021-<br>08 | 47.97355 | -129.08228 | 2144 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NE_050mab_2021-<br>08 | 47.97355 | -129.08228 | 2099 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NE_125mab_2021-<br>08 | 47.97355 | -129.08228 | 2025 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NE_200mab_2021-<br>08 | 47.97355 | -129.08228 | 1953 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NE_250mab_2021-<br>08 | 47.97355 | -129.08228 | 1902 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NW_MJB_2021-08 | 47.97456 | -129.08703 | 2141 | Weighted bottom of fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NW_005mab_2021-<br>08 | 47.97456 | -129.08703 | 2134 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NW_050mab_2021-<br>08 | 47.97456 | -129.08703 | 2089 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NW_125mab_2021-<br>08 | 47.97456 | -129.08703 | 2015 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NW_200mab_2021-<br>08 | 47.97456 | -129.08703 | 1941 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | RCM-NW_250mab_2021-<br>08 | 47.97456 | -129.08703 | 1891 | Fixed position mooring extending 270 m into the water column and topped with an orange buoy | | INEF I DINE Observatory/Oce | an ivelworks | Carlada 4/0 | | November 2023 | |-------------------------------------------------------------|--------------|-------------|------|---------------------------------------------------------------------------------------------| | RCM-SE_MJB_2023-07 | 47.93328 | -129.09895 | 2220 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-SE_005mab_2023-<br>07 | 47.93328 | -129.09895 | 2220 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-SE_050mab_2023-<br>07 | 47.93328 | -129.09895 | 2170 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-SE_125mab_2023-<br>07 | 47.93328 | -129.09895 | 2091 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-SE_200mab_2023-<br>07 | 47.93328 | -129.09895 | 2013 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-<br>SE_250mab_down_2023-<br>07 | 47.93328 | -129.09895 | 1969 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-<br>SE_250mab_up_2023-07 | 47.93328 | -129.09895 | 1970 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-<br>SW_005mab_Autonomou<br>s_2023-06/07 | 47.93379 | -129.10735 | 2163 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-<br>SW_050mab_Autonomou<br>s_2023-06/07 | 47.93379 | -129.10735 | 2117 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-<br>SW_125mab_Autonomou<br>s_2023-06/07 | 47.93379 | -129.10735 | 2041 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RCM-<br>SW_200mab_Autonomou<br>s_2023-06/07 | 47.93379 | -129.10735 | 1966 | Fixed position mooring extending 250 m into the water column and topped with an orange buoy | | RidgeFlank_AuxiliaryPlatf<br>orm_ENWF_2023-07 | 47.95989 | -129.12436 | 2365 | 1.5 m steel and plastic frame | | RidgeFlank_BBS_ENWF<br>_2016-06 | 47.95977 | -129.12448 | 2361 | 1 m spherical grey titanium platform | | RidgeFlank_Autonomous<br>_BBS_ENWF_2023-09 | 47.95983 | -129.12431 | 2357 | 1.5 m steel and plastic triangular frame | | WestRidgeCrest_North_A<br>utonomousSedimentTrap<br>_2023-06 | 47.94229 | -129.11181 | 2085 | Yellow mooring extending 28m above bottom | | WestRidgeCrest_South_<br>AutonomousSedimentTra<br>p_2023-07 | 47.93709 | -129.10604 | 2190 | Yellow mooring extending 68m above bottom | Figure 1: Regional Circulation Mooring Diagram (RCM) Figure 2: Sediment Trap Diagram Full cable routes and waypoints are available for use with Electronic Navigation Systems from the ONC website: https://www.oceannetworks.ca/notice-for-mariners/ **Contacts:** If you have any concerns, or would like further information, please contact either: Meghan Paulson, Ocean Networks Canada's Director of Observatory Digital Operations at mpaulson@uvic.ca or 250 721-6279, or ONC GIS Specialists at GIS@oceannetworks.ca.