


Information for Mariners – December 2025

VENUS/ONC Saanich Inlet

Project: The Victoria Experimental Network Under the Sea (VENUS) is an oceanographic project managed by Ocean Networks Canada (ONC) of the University of Victoria. It consists of cabled observatories in both Saanich Inlet and the Strait of Georgia. From a shore landing, an armoured marine cable extends along the ocean bottom to large observatory “Nodes”, into which oceanographic instrument systems connect. High voltage power is supplied down the cable, and Ethernet communications along fibre optics bring data and images back to the University in real time. Project status, system information, and data are available from the ONC website: <http://www.oceanetworks.ca>

What: High voltage marine fibre optic cables and observatory systems (see web site for system details). Cables and obstructions are marked on chart 3441.

When: Latest system and instrument deployments in Saanich Inlet: **28 November, 2025**

This figure has been produced by the University of Victoria based on Canadian Hydrographic Service (CHS) charts, pursuant to CHS Direct User License No. CHS #: 2024-0822-1260-ON. The incorporation of data sourced from CHS in this product shall not be construed as constituting an endorsement by CHS of this product. This product does not meet the requirements of the Charts and Nautical Publications Regulations, 1995 under the Canada Shipping Act, 2001. Official charts and publications, corrected and up-to-date, must be used to meet the requirements of those regulations.

Installations:

Name	Latitude	Longitude	Depth (m)	Description
Node	48.65090	-123.48671	100	Large 3m black trawl resistant frame; 2 tons
Instrument Platform	48.65120	-123.48720	95	Small rectangular (1m x 3m) white steel frame platform with green grating
Hydrophone Array	48.65167	-123.48706	92	1.5 m steel tripod with cable to 3m separate rectangular steel platform
Inshore Buoy Profiling System (BPS)	48.62260	-123.49875	Surface to 200	7.5 m yellow surface platform with profiling buoy
BPS East Anchor	48.62230	-123.49479	200	Double train wheel with 10 m of 1" chain and 350 m of 3/4" mooring line
BPS East Anchor (old)	48.62233	-123.49417	200	Anchor with potential floating line
BPS NW Anchor	48.62482	-123.50092	200	Double train wheel with 10 m of 1" chain and 350 m of 3/4" mooring line
BPS SW Anchor	48.62027	-123.50065	200	Double train wheel with 10 m of 1" chain and 350 m of 3/4" mooring line

BPS SW Anchor (old)	48.61958	-123.50133	200	Anchor with potential floating line
Autonomous Mooring (SILL-21)	48.68793	-123.50134	91	1.0m x 0.5m x 0.6m cubic steel frame platform resting on sea floor
Autonomous CTD	48.65118	-123.48667	95	0.5 x 0.5 x 1.0m hex-shaped steel casing with moored buoys extending 7.5m above seafloor.

Cable Route from Hydrophone to Instrument Platform (IP):

Cable Waypoint	Latitude	Longitude
W1 (IP)	48.65120	-123.48720
W2 (Hydrophone)	48.65167	-123.48706

Cable Route from Instrument Platform (IP) to Node:

Cable Waypoint	Latitude	Longitude
W1 (IP)	48.65120	-123.48720
W2 (Node)	48.65090	-123.48671

Cable Route from Node to Cable End:

Cable Waypoint	Latitude	Longitude
W1	48.6509	-123.4867117
W2	48.65075575	-123.4847236
W3	48.65051799	-123.4827472
W4	48.65017199	-123.4807841
W5	48.64982599	-123.4788211
W6	48.64947999	-123.4768581
W7	48.64936684	-123.4762161

Full cable routes and waypoints are available for use with Electronic Navigation Systems from the ONC website: <https://www.oceannetworks.ca/notice-for-mariners/>

Contacts: If you have any concerns or would like further information, please contact either Ben Biffard, Ocean Networks Canada's Director of Digital Operations, at bbiffard@oceannetworks.ca, or ONC GIS Specialists at GIS@oceannetworks.ca.